
Citation: Villagra, J.; Raggio, J.; Alors,

D.; Sancho, L.G. Desiccation Tolerance

of Epiphytic Macrolichens in an

Evergreen Temperate Rain Forest

(Alerce Costero National Park, Chile).

Plants 2024, 13, 1519. https://doi.org/

10.3390/plants13111519

Academic Editor: Anna Aksmann

Received: 13 April 2024

Revised: 9 May 2024

Accepted: 17 May 2024

Published: 31 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Desiccation Tolerance of Epiphytic Macrolichens in an Evergreen
Temperate Rain Forest (Alerce Costero National Park, Chile)
Johana Villagra 1,2,*, José Raggio 3, David Alors 2,* and Leopoldo G. Sancho 3

1 Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Campus San Juan,
Pablo II, Universidad Católica de Temuco, Temuco 478 0694, Chile

2 Departamento de Biología y Químicas, Facultad de Recursos Naturales, Campus San Juan Pablo II,
Universidad Católica de Temuco, Temuco 478 0694, Chile

3 Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense
de Madrid (UCM), 28040 Madrid, Spain; jraggioq@ucm.es (J.R.); sancholg@farm.ucm.es (L.G.S.)

* Correspondence: jovyvillagra@gmail.com (J.V.); dalors@uct.cl (D.A.)

Abstract: The Valdivian region has a temperate rainy climate with differences in rainfall throughout
the year. This heterogeneity results in periods of summer drought that expose the poikilohydric
epiphytes to desiccation. With this research, we aim to answer different research questions related to
phorophyte preference, response to desiccation, and response to radiation. How does the diversity of
macrolichens vary at a local and microclimate scale in three tree species within an evergreen forest?
What is the tolerance limit of macrolichens against prolonged desiccation, according to evaluation
of the maximum efficiency of PSII (Fv/Fm) and pigment concentration? What is the tolerance limit
against a potential increase in radiation? We found that macrolichen communities are determined
by tree species, which regulate the suitability of the substrate by modifying the temperature and
humidity conditions. In addition, our results show a rapid photosynthetic alteration in temporal
exposure to desiccation, measured through Fv/Fm and pigment concentration. Our results showed
that the most sensitive lichens to radiation and desiccation are not coincident. We confirm the low
tolerance of macrolichen species to high radiation, reflected in the saturation profile obtained for the
set studied. The lichen community in the evergreen forest showed high complexity and vulnerability,
pointing to the importance of more research.

Keywords: epiphytic macrolichens; desiccation tolerance; chlorophyll fluorescence; Alerce Costero
National Park

1. Introduction

The evergreen forests of the Cordillera de la Costa in Chile are a very humid and
shady ecosystem that is threatened by continuous anthropogenic intervention including
the replacement of native species with agricultural and forestry plantations [1]. The
importance of the Chilean evergreen forest lies in its unique floristic composition [2,3]
characterized by a rich diversity and endemism of epiphytic lichens [4]. The lichens in the
evergreen forest reach a high biomass that make them a visible and important component
of the forest ecosystem [4], which is possible due to an optimal combination of water
regime and temperature [5], constituting a relevant contribution to local biodiversity [4,6,7].
Epiphytic lichens are an important group of organisms in forest ecosystems [8,9] and
show high specificity to host species and the microhabitats offered by the phorophyte
trees [10,11]. Lichens are poikilohydric organisms and therefore lack mechanisms that
regulate the absorption and loss of water [12]. They are morphologically [13,14] and
physiologically [15] adapted to changes in their water content, therefore being especially
sensitive to climatic conditions [16]. For this reason, changes in the local climate can cause
modifications in the composition of epiphytic communities in host trees [17] or even the
disappearance of sensitive species [18] with a consequent decrease in diversity of species
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as a result of failure to respond fast enough to habitat changes [19]. Generally, lichens
are highly tolerant to desiccation; an excellent example of this survival capacity has been
recorded in lichens exposed to outer space conditions [20,21]. Survival times after long
periods of desiccation have also been recorded in Ramalina maciformis, with more than one
year of exposure to desiccation at 1% water content [22,23]. However, species adapted to
shady forest habitats with high relative humidity have been shown to be highly sensitive
to desiccation [24]. An example is the shade-adapted lichen Pseudocyphellaria dissimilis
from the New Zealand rain forest, which shows high sensitivity when exposed to short
periods of desiccation. Kranner et al. [25] evaluated tolerance of desiccation through
determining the chlorophyll loss in three lichens after a period of 9 weeks dehydration.
The authors found that in the sensitive species Lobaria pulmonaria and Peltigera polydactyla,
net photosynthesis needed a long time to recover in correlation with chlorophyll loss,
while the tolerant species Pseudevernia furfuracea did not show chlorophyll decrease and
photosynthesis recovered after a short time period. In addition to desiccation, lichens may
be particularly sensitive to high light stress as well [26]. Kershaw and MacFarlane [27]
reported that populations of Peltigera aphthosa collected from the dense shade of spruce
in northern Ontario were extremely sensitive to high light, while in contrast, populations
collected from open habitats were much more tolerant. Especially, shade-adapted forest
lichens showed lower resistance to high radiation with a strong decrease in photosynthetic
efficiency (Fv/Fm) when light intensity increased [28–30]. In this sense, epiphytic lichens
from shaded forests are important environmental indicators because of their sensitivity to
land-use and habitat changes [31], decreasing species richness, and the increasing number
of species threatened mainly by habitat degradation caused by human interference [32].

The inappropriate management of ecosystems can alter the biodiversity and balance of
epiphytic lichens, with the final result of diversity loss [28]. For this reason, it is important
to understand the response of these epiphytes to environmental fluctuations and to predict
their response to the adversity predicted by global climate change. If tolerance limits and
adaptive capacity are exceeded, stress can cause permanent damage and even the death of
these epiphytes [33]. This raises the question: how much desiccation can these epiphytes
tolerate in response to environmental conditions in a context of climate change or habitat
management that generates impacts on water availability? Productivity in lichens can vary
from zero to a maximum of activity in a few minutes depending on the available water [34].
In the context of climate change, minimum and maximum temperatures are projected to
increase in the entire Chilean territory throughout all seasons, with a winter precipitation
decrease exceeding 40% by the end of the twenty-first century [35]. These projections
represent a threat to water resources and natural vegetation, with negative consequences
especially for species that need greater availability of water in the environment to maintain
their active metabolism. Functional studies that evaluate desiccation and the photosynthetic
activity of lichens in Chile are few [36], even faced with the constant threat of climate
change in the country [37]. The objective of this work is to characterize the abundance
of macrolichens and their preference for host trees within the same evergreen vegetation
unit. We also aim to study the response of photosynthetic capacity associated with the
decrease in water availability and the response to the light effect in species with different
morphology within the same forest unit. The results obtained in this work will help in the
understanding of the responses of these important lichen communities to predicted climate
change and to different degrees of forest management.

2. Results
2.1. Diversity and Distribution of Macrolichens

We found a total of six families, eight genera, and 13 species of macrolichens (Table 1);
the highest diversity was recorded in the Lobariaceae family with 7 species belonging to
two genera. The highest species richness was recorded on Nothofagus nitida (Nn), differ-
ing statistically from Saxegothaea conspicua (Sc) and Drimys winteri (Dw) (Kruskal–Wallis
ANOVA on ranks p < 0.001; H = 30.895; d.f. = 2). N. nitida had the highest diversity (0.89)
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(Shannon–Wiener index), followed by the S. conspicua (0.57) and D. winteri (0.43). Regarding
the coverage percentage, no significant differences were recorded between the different
tree species (p = 0.21, ANOVA, α = 0.05). The Sorensen’s index resulted in a 67% similarity
between N. nitida and S. conspicua, sharing 7 species of a total of 13. In N. nitida and D.
winteri, the Sorensen’s index showed a 44% similarity.

Table 1. List of macrolichens and percentage of relative cover (CR) registered on Nothofagus nitida
(Nn), Saxegothaea conspicua (Sc), and Drimys winteri (Dw), Alerce Costero National Park, Chile.

Family Species Name Distribution Nn Sc Dw

Coccotremataceae Lepolichen coccophorus Endemic 2.8
Collemataceae Collema laeve Austral 1.3

Lobariaceae

Pseudocyphellaria berberina Endemic 7.2 22.0 48.0
Pseudocyphellaria coerulescens Endemic 5.3 8.7
Pseudocyphellaria divulsa Endemic 20.4 27.6 6.9
Pseudocyphellaria nitida Endemic 17.8 31.5 25.9
Sticta ainoae Endemic 34.4
Sticta caulescens Endemic 3.9 0.84
Sticta hypochra Endemic 1.5

Parmeliaceae Platismatia glauca Cosmopolitan 5.6

Sphaerophoraceae
Bunodophoron australe Austral 4.6 5.3
Bunodophoron ramuliferum Austral 1.5
Leifidium tenerum Austral 6.1 7.5 2.2

Atheliaceae Cora glabrata Cosmopolitan 1.3

When the lichen community was analyzed along the height of the tree trunk, signif-
icant differences in species richness were found only between the Drimys winteri strata
(Kruskal–Wallis ANOVA on ranks; p < 0.001; H = 46.7; d.f. = 5). No significant differ-
ences were found in terms of relative coverage by strata in the other two phorophytes
(Kruskal–Wallis ANOVA on ranks; p = 0.29; H = 7.13; d.f. = 5), however, a high coverage of
Sticta ainoae was recorded on stratum A of N. nitida (Nn A 63.52 ± 4.87, Table 2).

Table 2. Percentage of Relative Coverage (%RC) of macrolichen species represented by tree species
(Nothofagus nitida: Nn, Saxegothaea conspicua: Sc, and Drimys winteri: Dw), and two strata analyzed
(Stratum A: 0–0.5 m from the ground and stratum B: 0.5–1.8 m from the ground).

Macrolichen
Species

Tree Species

Nn Sc Dw

Stratum A %RC

S. ainoae 63.52 ± 4.87 Not found Not found
S. hypocra 2.87 ± 2.39 Not found Not found
C. laeve 2.87 ± 4.41 Not found Not found
S. caulescens 7.38 ± 0.76 2.04 ± 2.50 Not found
P. divulsa 14.75 ± 6.00 44.22 ± 2.90 20.37 ± 2.50
P. nitida 8.61 ± 3.15 29.93 ± 5.20 30.56 ± 11.68
P. berberina Not found 23.81 ± 5.67 49.07 ± 4.29

Macrolichen
species Stratum B %RC

B. ramuliferum 2.74 ± 5.00 Not found Not found
S. ainoae 1.37 ± 2.50 Not found Not found
C. laeve 2.74 ± 2.89 Not found Not found
D. glabratum 1.37 ± 0.00 Not found Not found
B. australe 9.59 ± 2.81 8.96 ± 4.00 Not found
P. divulsa 26.48 ± 6.05 16.04 ± 5.95 Not found
P. nitida 27.85 ± 4.91 32.55 ± 3.26 23.47 ± 3.98
P. berberina 15.07 ± 4.59 20.75 ± 3.90 47.42 ± 3.50
L. tenerum 12.79 ± 4.63 12.74 ± 6.63 3.29 ± 2.50
P. coerulescens Not found 8.96 ± 4.41 13.15 ± 7.68
L. coccophorus Not found Not found 4.23 ± 3.75
P. glauca Not found Not found 8.45 ± 7.64
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2.2. Microclimate Measurements

Mean relative humidity was higher in N. nitida (p = 0.0014) than S. conspicua and
D. winteri (89.7± 0.28, 88.6 ± 0.33, 88.3 ± 0.3 respectively). We did not find differences
in temperature values between tree species (p = 0.48; N. nitida 10.1 ± 0.12, S. conspicua
9.82 ± 0.12, and D. winteri 9.83 ± 0.12). Vapor pressure deficit (VPD) presented no signifi-
cant differences between the tree species (p = 0.87). Table 3 shows the microclimatic values
per stratum; relative humidity in the three tree species was higher in stratum A (0–0.5 m
from the ground) than in stratum B (0.5–1.8 m from the ground). The temperature values
were statistically higher in stratum B in N. nitida and D. winteri. Finally, VDP increased
with height but was only significant in N. nitida and S. conspicua (p > 0.001 in both trees).

Table 3. Relative humidity (%), temperature (◦C), and Vapor pressure deficit (VPD). A stratum
(0–0.5 m from the ground); B stratum (0.5–1.8 m from the ground) by tree species (Nothofagus nitida:
Nn, Saxegothaea conspicua: Sc, and Drimys winteri: Dw). n = 5 includes standard error.

Tree
Species

Humidity (%) Temperature (◦C) Vapor Pressure Deficit (VPD)
A B p A B p A B p

Nn 91.6 ± 0.2 87.8 ± 0.4 >0.001 9.8 ± 0.1 10.3 ± 0.1 0.0009 19.3 ± 0.007 29.9 ± 0.01 >0.001
Sc 91.6 ± 0.3 85.6 ± 0.4 >0.001 9.7 ± 0.1 9.9 ± 0.1 0.4 19.9 ± 0.009 34 ± 0.01 >0.001

Dw 89.1 ± 0.3 87.5 ± 0.3 0.002 9.7 ± 0.1 10.0 ± 0.1 0.002 25.1 ± 0.01 29.4 ± 0.01 0.16

2.3. Desiccation Tolerance

Figure 1 summarizes the temporal evolution of potential yield of photosynthetic
processes in Photosystem II (Fv/Fm, from day 1 to day 71 of the treatment). Fv/Fm values
at time 1 were greater than 0.6 in chlorolichens and cyanolichens; therefore, we consider that
the photosynthetic apparatus of the eight evaluated species was in optimal condition before
collecting them. Also, it was shown that from day 13, there was a significant depression in
Fv/Fm in most species with respect to the physiological state of the starting point (p < 0.001,
ANOVA, α = 0.050). We found that the cyanolichens Pseudocyphellaria coerulescens and
Sticta caulescens showed the greatest percentage of Fv/Fm decline at 13 days after collection
from the field (57.5%, 49.1% respectively), followed by fruticose chlorolichens Bunodophoron
australe (31.6%) and Leifidium tenerum (26.2%) and foliose chlorolichens Pseudocyphellaria
nitida (18.6%) and Pseudocyphellaria berberina (17.7%). Otherwise, P. divulsa and S. ainoae
were less affected during the first weeks of treatment. In both species, Fv/Fm declined
from day 53 (6.3 and 11.4% respectively).

Concentration of photosynthetic pigments over time was different between the species
(Supplementary Table S1). At time 1, the species with the highest concentrations of chloro-
phyll were Sticta ainoae (2.22 mg/g) and Pseudocyphellaria berberina (2.15 mg/g) (Kruskal–
Wallis ANOVA on ranks; p = 0.003; H = 21.653; d.f. = 7). With respect to carotene concen-
tration, the species with the highest concentration at time 1 was P. berberina (2.47 mg/g),
followed by S. ainoae (2.02 mg/g) and P. divulsa (1.35 mg/g). The carotene content of the
two Pseudocyphellaria species was statistically different but not different from the carotene
content of S. ainoae, and P. divulsa carotene content was not different from the five other
species analyzed (Kruskal–Wallis ANOVA on ranks; p = 0.002; H = 22.897; d.f. = 7). The
pigment content (chlorophyll and carotene) over time during the desication treatment
showed three patterns within species: (1) decrease after 53 days in L. tenerum and P. berbe-
rina; (2) decrease after 71 days in B. australe, P. coerulescencs, and S. ainoae; (3) and the
maintaining of pigment content over 71 days in Sticta caulescens, P. divulsa, and P. nitida.
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Figure 1. Maximum quantum yield of Photosystem II (Fv/Fm) in 8 epiphytic macrolichens during
thallus dehydration. ANOVA with repeated measures was used to compare Fv/Fm over time,
ANOVA p ≤ 0.05, followed by Tukey’s HSD post hoc test. Mean ± SE (n = 12). Different letters (a–e)
show statistical differences.

2.4. Response to Light

We measured Y(II) as an indicator of the efficiency of reaction centers under lighting
conditions of three relevant radiations (24, 55, and 367 µmol m−2 s−1) to unravel how the
set of lichens were adapted to different light intensities. From an initial value of Y (II) greater
than 0.6, all the lichen species tested decreased at 24 PPFD, showing a percentage of Y(II)
with respect to the initial value which was not different between species (alpha 0.05). At
55 PPFD, the percentage of decrease in Y(II) varied significantly between species (p = 0.026).
For example, P. divulsa showed the greatest decay (78.1%), being statistically different from
S. caulescens and P. nitida, which decreased by 49.02% and 53.81%. The rest of the species
showed Y (II) decays at 55 PPFD that were not statistically different from each of the other
species. At 367 PPFD, the yield percentages did not show significant differences between
species (p = 0.070).

In situ ETRmax values (Supplementary Table S2) differed between the different species
(p= 0.016, ANOVA, α = 0.050). The maximum ETR values were recorded for P. coerulescens,
S. caulescens, and P. divulsa (122 µmol m−2 s−1). The rest of the evaluated species pre-
sented maximum ETR values at 183 µmol m−2 s−1. In situ PPFDsat values differed
between the different species (p = 0.023, ANOVA, α = 0.050). The range of the satura-
tion point for the macrolichens of the mixed forest fluctuated between 24.73 ± 8.51 and
87.09 ± 23.2 µmol m−2 s−1 (L. tenerum and P. nitida, respectively).

3. Discussion

The relationship between tree species and the diversity of lichen species is a known
phenomenon [8]. The importance of these epiphytes in the Chilean evergreen forest lies
in their rich diversity, high biomass, and endemism [4], which is possible due to the
area’s water regime, among other factors [5]. However, these conditions could also be
unfavorable for some lichens, since they would be limited in terms of the presence of
species by other groups, such as bryophytes, which dominate better in these conditions [38].
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Our results coincide with this affirmation, since the number of species recorded in this
study (14 species) was lower than those recorded in areas of greater exposure such as
Sphagnum and pulvinated peat bogs (35 and 23 species, respectively [39]), Nothofagus
pumilio (19 species [40]), and Araucaria araucana (more than 30 species [41]). However, the
diversity of the lichens that were found is represented by 57% endemism and sharing
20% of the genera on the trunk and branches stratum described by Galloway [4] for the
temperate rain forest of southern Chile.

We found that the structure of the macrolichen community was determined by the
tree species, since this regulates the suitability of substrate by modifying the temperature,
humidity, and light conditions on which the epiphytes depend. Thus, species richness of
epiphytic macrolichens varies significantly between host tree species. The largest number of
exclusive species was found on N. nitida (especially cyanolichens, for example, Collema leave,
Sticta caulescens, Sticta hypocra). D. winteri presented two exclusive species within the unit
(Lepolichen coccophorus and Platismatia glauca) which have been related to a greater range
of substrates, mainly in environments with greater light intensity [42–44]. On the other
hand, although we found significant differences in terms of only the vertical distribution
of the species in D. winteri, our data indicate preferences of certain species regarding the
microenvironments offered by the phorophyte. Thus, we found that the largest number
of total species and chlorolichens occurred in the B stratum of the three tree species. This
coincides with different studies that show a pattern through the vertical gradient, in which
the number of epiphytes tends to increase from the base of the tree to the canopy [11,45,46].
Such a pattern would respond to fluctuating microclimatic conditions throughout the
tree [47–49] and probably reflects a set of ecophysiological requirements necessary to
adapt to the environment [50]. On the other hand, the greatest number of cyanolichens
were found in the darkest and most humid areas (A stratum), an association that could
turn out to be highly fragile, since shade epiphytes are more sensitive to environmental
changes, mainly because they have lower tolerance to photoinhibition when exposed to
more sunlight [51–54]. In addition, cyanolichens would be favored by the formation of
small pools of water observed at the base of tree species as a result of stem runoff. This
would favor cyanolichens that require liquid water to start the photosynthetic process [34].
The cyanolichen species Pseudocyphellaria coerulescens and Cora glabrata have been recorded
in areas with more exposure to light in temperate forests of Nothofagus nitida [55], which
showed the highest humidity within the three tree species (Table 3). We also found a group
of generalist species including Pseudocyphellaria nitida and Pseudocyphellaria berberina that
were able to occur in all three tree species and both strata, with the species L. tenerum occur-
ring on the B stratum of all three tree species. (Table 2). These species, despite inhabiting
an area of high humidity [5], probably have moderate water requirements in comparison
with species restricted to the lower stratum of N. nitida and Saxegothaea conspicua. Another
group of species associated with more exposed areas of the forest occurred in the B stratum
of D. winteri. The dominant species of this group was P. berberina, accompanied by P. glauca
and L. coccophorus (which were recorded only in the B stratum of D. winteri) among other
lichen species (Table 2). This set of epiphytes has been related to a wide range of substrates,
but mainly to higher light intensity [5]. Thus, lichen colonization responds to a series of
conditions determined by the heterogeneity of the microclimate [47,49,56,57].

All the lichens showed a decay of maximum quantum yield in Photosystem II (Fv/Fm)
as a consequence of the dehydration stress (Table 4). We observed species-specific re-
sponses in terms of Fv/Fm decrease, which can be explained in terms of functional groups
(cyanolichens, fruticose chlorolichens, and foliose chlorolichens). The most sensitive species
to dehydration were the cyanolichens Pseudocyphellaria coerulescens and Sticta caulescens,
which were minority components of the B strata of S. conspicua and Drimys winteri and
the A strata of S. conspicua and N. nitida, respectively. Pseudocyphellaria coerulescens and
Sticta caulescens showed decreases in Fv/Fm of 59% and 50%, respectively, after thirteen
days. This was in accordance with the observed higher sensitivity to environmental stress
among cyanolichens [25,58] that, in contrast to the green algal species, do not show net
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photosynthesis when hydrated by water vapor alone but require liquid water [16,59–61].
The fruticose lichens Bunodophoron australe and Leifidium tenerum, which were found only
in the B strata, showed higher sensitivity to dehydration (31.7% and 26.5% FvFm decay,
respectively) compared with foliose lichens. This is in accordance with previous works
that have shown that the fruticose biotypes are highly sensitive to disturbance to habitat
fragmentation via induced edge effects, dispersal of pollutants by pesticide drift, and air
pollution sensitivity [62,63]. Foliose biotypes were found in both A and B strata and were
found to be more tolerant to dehydration measured as Fv/Fm decay, with Pseudocyphellaria
nitida showing a decay of 18.7% and Pseudocyphellaria berberina 17.5% after 13 days. Even
more dessication tolerance was shown by the other two foliose chlorolichens, Pseudocyphel-
laria divulsa and Sticta ainoae, which showed no significant decay in this parameter until
day 53. Cyanolichens were shown to be the most sensitive to dehydration measured as
Fv/Fm decay, supporting the use of this group of lichens as indicators of good quality of the
environment and the presence of liquid water [64]. Our results support the hypothesis that
epiphytic lichens of the Valdivian rain forest are adapted to short periods of desiccation,
but do not survive if desiccation is prolonged over time.

Table 4. Effective photosynthetic yield of Photosystem II or Yield Y(II) and yield percentage with
respect to the initial yield value at different Photosynthetic Photon Flux Density (PPFD) of 24, 55,
and 367 µmol m−2 s−1. Statistical differences were performed using ANOVA p ≤ 0.05 between the
different species. Mean ± SE (n = 4). Different letters show statistical differences within columns.

Species Y (II) PPFD 24 PPFD 55 PPFD 367
p ≤ 0.01 p = 0.04 p = 0.026 p = 0.070

P. coerulescens 0.64 ± 0.015 84.42 ± 14.7 a 41.06 ± 4.9 ab 4.66 ± 1.3 a
S. caulescens 0.62 ± 0.027 78.42 ± 16.8 a 50.98 ± 11.7 b 4.80 ± 1.3 a
L. tenerun 0.64 ± 0.02 89.61 ± 19.5 a 39.09 ± 4.9 ab 3.17 ± 0.7 a
B. australe 0.66 ± 0.011 76.26 ± 13.9 a 37.26 ± 4.7 ab 4.34 ± 1.4 a
P. berberina 0.63 ± 0.014 70.96 ± 9.6 a 29.16 ± 3.6 ab 4.85 ± 0.5 a
P. nitida 0.70 ± 0.011 83.50 ± 10.5 a 46.19 ± 3.6 b 7.93 ± 1.5 a
P. divulsa 0.68 ± 0.017 71.43 ± 16.2 a 21.86 ± 3.7 a 2.44 ± 0.5 a
S. ainoae 0.68 ± 0.017 68.30 ± 12.2 a 22.74 ± 1.6 ab 3.65 ± 0.8 a

The photosynthetic pigment contents measured in this work were within the range
measured in chlorolichens of New Zealand´s temperate rainforest [65]. It should be
mentioned that the pattern of decay observed in chlorophyll was coupled to the decay
observed in carotene. Our results showed significant decreases in photosynthetic pigments
at different days of desiccation within species: in P. berberina after 24 days, in L. tenerum
and P. berberina after 53 days, and B. australe, P. coerulescencs, and S. ainoae needed 71 days
of desiccation, while the species Sticta caulescens, P. divulsa, and P. nitida did not show
differences in pigment concentration over time. Our results showed generalized and
faster Fv/Fm reduction with desiccation over time, with six species showing significant
decay after 13 days, the decay after 24 days in P. divulsa, and after 53 days in S. ainoae.
Therefore, Fv/Fm preceded the reduction in the content of photosynthetic pigments, and
the degradation and damage to photosynthetic pigments should be considered not only in
a quantitative way but also in a qualitative way.

The studied lichens from Valdivian Forest showed great performances with 24 µmol m−2 s−1

and a decay in 50% of the photosynthetic yield when a light of 55 µmol m−2 s−1 was
applied. These results suggest an adaptation to low radiation in the case of evergreen
forest lichens, coinciding with the results of Green et al. [65], who found lower light
saturation points in lichens from shaded habitats in New Zealand compared with those
from sun-exposed habitats.

The saturation point is an important parameter showing the light intensity, which
allows positive photosynthetic balance, and the values obtained in this study are in con-
cordance with those obtained from lichens adapted to shade conditions inside forests,
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as reported by Lakatos et al. [14] and Pardow et al. [66], contrasting with the high toler-
ance to light (higher saturation points) shown in lichens inhabiting exposed areas [67,68].
The measured decrease of photosynthetic yield from low light intensities and the low
saturation points reflect adaptation to their shady environment. It has been shown that
for lichens inhabiting shady forests, the low indirect light could be enough to stimulate
lichen growth [69], as could the direct light experienced for short periods as sunflecks [14].
On the other hand, exposure to higher light intensities negatively affects the growth of
lichens from shady rain forests [70]. Thus, although light is essential for the photosynthesis
of these organisms, an excess of energy absorbed by photobionts can cause irreversible
photodamage in the algal Photosystem (PS) II [71].

The saturation point measured for the species studied reached the highest value for
P. nitida (87.09) and was statistically different from the three species L. tenerum, P divulsa,
and P. coerulescens. P. nitida was also the species which showed the highest ETR value; the
relationship between ETR and incident PAR indicates the level at which the photosynthetic
apparatus suffers due to excessive radiation, as the higher the ETR value is, the higher is
the light intensity necessary to affect negatively the photosynthetic apparatus. As P. nitida
showed the highest saturation point and the highest ETR value, this species is considered
the least sensitive to light among the species measured. This result is in accordance with its
high success measured as coverage within the three tree species and the two strata, greater
than 25% of the average cover (Table 2).

It is remarkable that in all species, the maximum ETRmax values were not obtained
at maximum radiation, which suggests generalized photoinhibition. The ETR max values
were in the ranges reported by Pardow et al. [66] for crustose lichens from tropical forests
(between 4.6 and 1.8) and Lakatos et al. [14] for crustose lichens in a evergreen forest in
French Guiana (between 7.52. and 14.8). In contrast, the highest ETRmax values have
been reported in light-exposed areas for the species Stereocaulon foliolosum (45) and Lecanora
muralis (179) [59].

We showed an important decay of photosynthetic potential in response to dehydration
and low light saturation points in most evergreen forest lichens. To a certain extent, these
findings allow us to predict the vulnerability of species with high water requirements or
low radiation tolerance in the face of a scenario of water stress expected in the region in
the context of climatic oscillations and global warming [60,61]. It is worth highlighting the
importance of developing long-term eco–physiological studies that allow us to understand
the response and adaptation of these organisms that are especially vulnerable to the effects
of climate change.

4. Materials and Methods
4.1. Study Area

The specimens were collected in an evergreen forest (hereinafter called mixed forest)
Alerce Costero National Park (40◦00′ S/73◦25′ W, 600 m altitude), Los Ríos Region, Chile
(Figure 2A,B). The climate of the area is defined as hyper-humid mesotemperate [62]. The
mean annual temperature is 10 ◦C, the warmest month is January with 17.2 ◦C, and the
coldest July, with 7.6 ◦C [63]. The region has a mean annual rainfall of 2130 mm, registering
maximums of 4000 and 5000 mm per year [72,73] and, exceptionally, rainfall of around
7000 mm in the year 2000 [5].
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Figure 2. (A) Location of the study area in the Alerce Costero National Park (Los Ríos Region, XIV
Region, Chile). (B) Evergreen Forest of Nothofagus nitida, Saxegothaea conspicua, and Drimys winteri
(mixed forest in the text).

4.2. Censuses of the Lichen Flora

We selected five 30 × 30 m plots, each 50 m apart, to study the macrolichens in the
stands of Nothofagus nitida, Saxegothaea conspicua, and Drimys winteri species dominant in
the evergreen forest selected. Within each plot, we selected five old trees per phorophyte
species, for a total of 45 trees. The censuses were carried out through applying a 20 × 50 cm
quadrant directly to the trunk to evaluate the cover percentage. Two censuses were made,
with random orientation from ground level to 0.5 m (stratum A) and from 0.5 to 1.80 m
(stratum B). The identification of the species was conducted based on [55,74–76]. For the
richness, coverage, vertical distribution, and community diversity analysis of the lichen, the
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program PAST 4.11 was used. For each subsample studied, species richness was registered
and the Shannon–Wiener diversity index (H′) was calculated according to the formula:

H′ = −
n

∑
i=1

= piln(pi)

where pi = relative proportion (coverage) of the i species.

4.3. Microclimate

Six temperature/humidity loggers (iButton® DS1923, MCI electronics, Santiago, Chile)
were installed in the study area, programmed to record every 4 h. The recorded period
was from 5 September 2014 to 18 February 2015. In this study, 2 sensors were placed on
1 specimen of each tree species (the loggers were placed uniformly on A and B strata). From
the data obtained on humidity and temperature, the water deficit was estimated. Saturation
pressure vapor in the air (SPV) was calculated as in Murray (1967) using the equation SPV
Pascals = 610.7 × 107.5T/(237.3 + T), and vapor pressure deficit (VPD) was calculated from
T and RH according to the following equation: VPD (Pascals) = (1 − (RH/100) × SPV),
where VDP is an approximate measure of the drying power of the air.

4.4. Sample Collection

A total of 20 individual lichen samples were collected of each of the following species:
Pseudocyphellaria coerulescens, Leifidium tenerum, Bunodophoron australe, Pseudocyphellaria
berberina, Pseudocyphellaria nitida, Pseudocyphellaria divulsa, Sticta ainoae and Sticta caulescens.
These species were selected according to coverage percentage within the study area (Table 1).
Samples were dried in a room with a natural air flow for 2 days, stored for 5 days in a paper
envelope, and transported to the laboratory.

4.5. Desiccation Tolerance

The initial measure of photosynthetic response started in situ at time 1 and was
considered as the control. The following measurements were taken after maintaining the
lichens in a climatic chamber simulating desiccation conditions. The programed conditions
simulated day/night: 15 ◦C and 60% humidity for 12 h with photosynthetically active light
(PPFD) at 100 µmol m−2 s−1 and 12 ◦C and 55% humidity for 12 h in darkness (FITOTRON®

SGC 120, High Specification Plant Growth Chambers, Weiss Technik UK, Loughborough,
UK). We measured two parameters to evaluate desiccation tolerance: maximum quantum
yield of Photosystem II (Fv/Fm), was used as an indicator of potential photosynthetic
performance of the samples after preadaptation to darkness, along with pigment content
(total chlorophyll and carotenes). First, for the evaluation of Fv/Fm, four individuals
(4 replicates) were considered and three measurements (3 pseudo replicates) per individual
were taken (n = 12). From the same individuals, the pigment content was evaluated (n = 4).
After 13, 24, 53, and 71 days, four specimens of each of the 8 species were removed from
the chamber and hydrated to saturation with mineral water for 30 min. Samples were
moistened, left in the dark for 20 min, then illuminated for 1 s with a saturating excitation
pulse (1800 µmol s−1 m−2), and Fv/Fm was measured using a fluorometer MINI-PAM
(Walz, Effeltrich, Germany). The fluorometer was positioned at 2–4 mm with an angle of
60◦ to avoid shading the thallus [77].

The chlorophyll content of the 8 lichen species was determined at the same sampling
times as Fv/Fm, following [78]. A total of 20 mg for each sample was repeatedly washed
with CaCO3-saturated acetone to remove lichen substances, and pigments were extracted
in CaCO3-saturated DMSO. Absorbance of the extracts was measured using a UV–visible
spectrophotometer (Uvikon XL, NorthStar Scientific, Leeds, UK). Absorbance was mea-
sured at 664.9, 648.2, 480, 435, and 415 nm, and total chlorophyll concentrations calculated
(expressed in mg g−1 dry weight) using the formulas provided in Barnes et al. [78].



Plants 2024, 13, 1519 11 of 14

4.6. Response to Light

A rapid light curve (RLC) was measured to obtain the evolution of the quantum
use efficiency of PSII in the light (YII or yield) versus increasing levels of radiation and
to evaluate the level of light at which Photosystem II was saturated (PFDsat) [77,79].
RLC per sample was performed in situ and 8 light intensities were applied to each RLC,
which increased every 10 s (24, 38, 55, 81, 122, 183, 262, and 367 µmol m−2 s−1). The
effective quantum efficiency of Photosystem II (Y II) and the ETR were measured after
acclimation in darkness for 20 min. Each Φ PSII measurement was used to calculate
the electron transport rate (ETR) through Photosystem II using the following equation:
ETR = PPFD × 0.84 × 0.5 × Y(II), where PPFD is the photosynthetic PPFD recorded with
the sensor in the leaf clip, 0.84 is the estimated mean proportion of incident light absorbed by
the photosystems, 0.5 is the required factor for both photosystems to account for absorbed
photons, and Y(II) is the effective quantum yield of Photosystem II [80]. The values for Y(II)
oscillated between 0.76 and 0.6 when environmental stress was negligible for chlorolichens
and between 0.61 and 0.41 in cyanolichens, in agreement with Jensen et al. [81], but these
values decreased with increasing environmental stress. For each specimen, the data for
Y(II) and ETR against PFD were adjusted according to the statistical models proposed by
Rascher et al. [77]. Light saturation points were determined with the adjusted ETR vs. PFD
curve (calculated as the PPFD value when 90% of the maximum ETR was reached).

4.7. Statistical Analysis

For measurements of Fv/Fm, repeated measures, ANOVA was performed. With
respect to chlorophyll and carotene content, Y (II), and ETRmax, ANOVA was performed
followed by Tukey HSD post hoc tests, indicating significant differences at p < 0.05. Analy-
ses were carried out using Statsgraphic (5.1). Data were transformed, if required, to comply
with the assumption of normal distribution [82].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13111519/s1, Table S1: Concentration of total chlorophyll
(Chl) and carotenes (car) in epiphytic macrolichens in the time (1, 13, 24, 53, 71 days of experiment).
The pigment concentration is referred as mg/g. Mean ± SE (n = 4). ANOVA with repeated measures
was used to compare concentration pigment over time and different letters indicate significant
differences. ANOVA p≤ 0.05, followed by Tukey’s HSD post-hoc test. Mean ± SE (n = 12); Table S2:
Maximum electron transport rate (ETRmax) and saturation points (PPDsat) obtained from the
exponential fit (using the Sigma Plot Program) of the data recorded in situ. The PPFD units are
referred to as µmol m−2 s−1. Statistical differences were evaluated using ANOVA p ≤ 0.05 followed
by Tukey’s HSD post-hoc test. Mean ± SE (n = 4).
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