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A B S T R A C T   

Carbon (C) and nitrogen (N) inputs strongly influence the formation, turnover and sequestration of soil organic 
carbon (SOC) in agricultural ecosystems. It is not clear, however, how N input regulates the contribution of plant- 
and microbial-derived C to SOC sequestration under straw return. To fill this gap, plant and microbial bio-
markers, as well as enzyme activities were determined in a long-term (18 years) field experiment. Straw return 
and N fertilization increased SOC content by 20% and 10%, respectively. Specifically, straw return increased the 
proportion of total lignin (mainly vanillyl and syringyl) phenols in SOC by 16%, but decreased the proportion of 
cinnamyl in SOC by 7.5%. This implied that some plant residues were selectively preserved, while the com-
pounds that were less stable than cinnamyl were easily decomposed. The increased phospholipid fatty acid 
(PLFA) content and enzyme activities with straw return indicated the acceleration of straw decomposition. Based 
on amino sugar content, straw return did not alter the proportion of microbial necromass to SOC. Together, 
lignin and amino sugars co-determined the stable contribution of plant- and microbial-derived C to SOC 
sequestration under straw return. N fertilization increased the portion of microbial necromass (especially bac-
terial necromass) C in SOC by 6% and thus decreased the plant residue contribution to SOC. Accordingly, N 
fertilization accelerated the microbial utilization of straw and consequently microbial necromass formation. In 
terms of PLFA composition, Ascomycota and Basidiomycota, Actinobacteria, and Gram-negative bacteria were 
the key groups forming microbial necromass and thus SOC. N fertilization increased N-acquiring enzyme ac-
tivities and boosted the involvement of microbial necromass in nutrient cycling, which in turn may stimulate 
plant and microbial growth. Overall, straw return simultaneously increased plant- and microbial-derived C, 
while N fertilization stimulated microbial growth and enzyme activity and thus increased straw conversion to 
microbial necromass.   

1. Introduction 

It is critical to increase the sequestration and storage of soil organic 
carbon (SOC) in croplands to maintain and improve soil fertility (Lal, 

2004; Yan et al., 2011; H. Zhao et al., 2018) as well as to mediate climate 
warming by reducing CO2 emissions (van Wesemael et al., 2010). SOC is 
fundamentally derived from plants and stabilized in soil through com-
plex biotic and abiotic processes (Lehmann and Kleber, 2015; Liang 
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et al., 2017). Lignin is commonly used as a biomarker of plant residues 
(Hofmann et al., 2009; Hall et al., 2020) due to its chemical persistence, 
extremely low energy availability (Gunina and Kuzyakov, 2022) and 
longer turnover time. However, an increasing number of studies suggest 
that such recalcitrant lignin can be decomposed quickly at the early 
stage of decomposition (Lehmann and Kleber, 2015; Zhou et al., 2022), 
given that it is easily accessible and less protected by minerals or ag-
gregates (Angst et al., 2021; Whalen et al., 2022; Xiao et al., 2023). 
Accessible plant residues can be converted into microbial-derived C 
through the in vivo turnover of microorganisms. The accumulation of 
microbial-derived C has recently been considered equally important as 
plant residues and even more important in some cases (Sokol and 
Bradford, 2019). More importantly, microbial necromass is closely 
associated and interacts with the soil mineral matrix to form relatively 
persistent organo-mineral associations. Accordingly, microbial necro-
mass C tends to be more stable than plant-derived C (Liang et al., 2017, 
2020; Sokol et al., 2022). Therefore, clarifying the contribution of 
plant-derived C (plant residues) and microbial-derived C (microbial 
necromass) to SOC is the key step in determining the mechanisms of SOC 
formation (Ma et al., 2018; Li et al., 2020; Luo et al., 2022). 

The contribution of plant- and microbial-derived C to SOC in crop-
land can be influenced by human activities (Liang et al., 2020; Guhra 
et al., 2022). For example, straw return is a management regime with 
much higher C input than the input of only stubble (including rhizo-
deposits) C in croplands (Liu et al., 2014; Li et al., 2019; Berhane et al., 
2020). Such massive plant residues must be degraded by enzymes to 
relatively small monomers or oligomers (typically less than 600 Da) 
before they can be actively transported across the cell walls of micro-
organisms (Weiss et al., 1991; Hedges and Oades, 1997). The hydrolysis 
of plant residues takes time, and thus the continuum from intact plant 
tissue to highly refined components increases the contribution of 
plant-derived C to SOC (Lawthef and Banksb, 1997; Lehmann and 
Kleber, 2015; Prescott and Vesterdal, 2021). Additionally, fresh plant 
residues may induce a priming effect to accelerate soil organic matter 
turnover (Mason-Jones et al., 2018). Especially, the high C:nitrogen (N) 
ratio of straw will stimulate microorganisms to excavate organic matter 
with high N content (e.g., microbial necromass) to balance N demand 
(Cui et al., 2020; Hao et al., 2021; Craig et al., 2022). Therefore, straw 
return may lead to an increase in the contribution of plant-derived C to 
SOC, but there is still a lack of direct evidence. 

N fertilization maintains the stoichiometry of C:N balance under 
straw return and therefore prevents the decomposition of microbial 
necromass caused by N mining (Feng et al., 2022). In addition, N 
fertilization may induce an entombing effect: the accelerated trans-
formation of plant residues into stable microbial products (Liang et al., 
2017; Wang et al., 2018b; Xu et al., 2022), leading to an increase in 
microbial-derived C within SOC. Consequently, straw return combined 
with mineral fertilization can increase SOC by 0.12–0.16 Mg C year− 1 

(Liu et al., 2014; Berhane et al., 2020). However, it remains elusive how 
the interactions between straw return and N fertilization regulate 
plant-derived C and microbial-derived C contributions to SOC. 

Microorganisms and extracellular enzyme activities determine the 
conversion of plant residues into microbial C (Wang et al., 2018a; Zhang 
et al., 2018; Bao et al., 2020). Straw return and N fertilizer alter the 
symbiosis and competitive relationship between fungi and bacteria (Six 
et al., 2006). Straw favors fungal growth as they are low-quality sub-
strates (high C:N) rich in lignin and cellulose, etc., while N fertilizers 
enhance bacterial utilization of low-molecular-weight plant debris, as N 
fertilizers provide available N and balance the high C:N ratio of straw 
(Six et al., 2006; Liu and Greaver, 2010; Hao et al., 2021). The selective 
degradation of plant residues by fungi and bacteria may accelerate the 
decomposition of plant residues (Glassman et al., 2018; Feng et al., 
2022). In turn, active microorganisms and high level of enzyme activ-
ities induce fast conversion of plant-derived C into microbial-derived C 
(Liang et al., 2017; Luo et al., 2022). This means that the interaction 
between straw return and N fertilization may increase the contribution 

of microbial-derived C to SOC. On the contrary, the rapid growth of 
fungi and bacteria leads to the competition between them, and thus 
weakens their ability to utilize substrates (Glassman et al., 2018; Feng 
et al., 2022). In addition, N fertilization may also cause excessive 
ammonia toxicity or soil acidification, resulting in a decrease in mi-
crobial respiration and biomass (Wang et al., 2018a; Zhang et al., 2018). 
Altogether, the contrasting responses of microbial community and ac-
tivity to straw and N input increase the uncertainty on the conversion of 
straw to microbial necromass. 

Here, based on an ongoing 18-year field experiment conducted in the 
dryland area on the southern edge of the Loess Plateau, we aimed to 1) 
quantify the contribution of plant-derived and microbial-derived C to 
SOC under straw return and N fertilization in cropland; and further 2) 
determine the microbial mechanisms regulating plant residue conver-
sion to microbial necromass. To accomplish these objectives, lignin 
phenols and amino sugars were used to assess plant-derived C and 
microbial-derived C in soil, respectively. Phospholipid fatty acid (PLFA) 
and C- and N-acquiring enzyme activities were determined to assess 
microbial community composition and activity. We hypothesized that: 
1) the contribution of plant residue accumulation was higher than mi-
crobial necromass to the sequestration of new SOC under straw return 
because microorganisms may not be capable of consuming the excessive 
additional C at low N levels and; 2) N fertilization accelerated straw 
conversion to microbial biomass and increased microbial necromass 
formation by boosting enzyme activities and microbial growth. 

2. Materials and methods 

2.1. Study site 

A long-term field experiment was conducted in 2002–2020 on the 
southern margin of the Loess Plateau in Yangling, Shaanxi, China 
(34◦17′N, 108◦04′E). The mean annual temperature and mean annual 
precipitation were 13 ◦C and 635 mm, respectively. The long-term field 
experiment was a monoculture agroecosystem of winter wheat (Triticum 
aestivum L.) sown in mid-October and harvested in mid-June of the 
following year. The calcareous clay loam (29.5% clay, 53.9% silt, and 
16.6% sand) was developed from loess parent material and classified as 
Eum-Orthic Anthrosol (or Udic Haplustalf in the USDA system). The 
initial soil properties (0–20 cm) in 2002 were as follows: pH 8.2, SOC 
8.0 g kg− 1, available N 7.8 mg kg− 1, and Olsen P 9.1 mg kg− 1. 

2.2. Experimental design 

The field experiment was a two-factor randomized block design. The 
two factors were wheat straw return (Str) and N fertilization (N), both 
with three levels (Table 1). In total, there were 36 plots (9 treatments ×
4 replicates) with a plot size of 9.9 m × 6 m. 

Straw mulching was adopted in 2002–2016. During these years, 80% 
of wheat stubble was left in the inter-rows after harvest in all plots, and 
the straw mulching rates in the Str7.5 and Str15 treatments were 2250 

Table 1 
Experimental treatment design, straw and nitrogen input rates.  

Treatments Straw return rate (Mg ha− 1) N fertilization rate (kg N ha− 1, urea) 

Str0N0 Str0 0 N0 0 
Str0N120  0 N120 120 
Str0N240  0 N240 240 
Str7.5N0 Str7.5 7.5 N0 0 
Str7.5N120  7.5 N120 120 
Str7.5N240  7.5 N240 240 
Str15N0 Str15 15 N0 0 
Str15N120  15 N120 120 
Str15N240  15 N240 240 

Note: Str is straw, N is nitrogen, Str0, Str7.5, Str15, N0, N120, and N240 are the 
different straw return and N fertilization rates from 2016 to 2020. 
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and 4500 kg ha− 1, respectively. In 2016–2020, only 40% of the stubble 
was left and the remaining aboveground biomass was removed and 
stored. This stored straw was crushed to a size <5 cm and was evenly 
distributed in the plots of treatments Str7.5 (7500 kg ha− 1) and Str15 
(15,000 kg ha− 1) before wheat sowing. Calcium superphosphate (100 
kg ha− 1, 3.5% P) was applied as basal fertilizer on all plots. Potassium 
fertilizer was not applied because the loamy soil was naturally rich in 
potassium. Prior to wheat sowing, a rotary tiller was used to incorporate 
mineral fertilizers and straw into the soil to a depth of 0–20 cm. 

2.3. Crop yield and stubble measurement 

Crop yields and soil C and N inputs were assessed annually. Before 
harvest, the aboveground biomass of winter wheat was sampled in the 
middle six rows of each plot (20% of each plot). The dry weight of grain 
and straw was determined after drying at 105 ◦C for 30 min and 
thereafter at 60 ◦C for 8 h. The C and N contents of the straw were 40% 
and 0.63%, respectively (C:N = 63). Underground parts (roots + rhi-
zodeposits) were estimated to account for 19.6% of total plant C 
(Bolinder et al., 2007). Atmospheric N deposition was 22 kg ha− 1 year− 1 

(Liang et al., 2016). Total C and N inputs from straw, stubble (including 
both above ground and underground parts), N fertilizer, and atmo-
spheric N deposition from 2002 to 2020 are shown in Table 2. 

2.4. Soil sampling, SOC and total N analyses 

Soil samples (0–20 cm) was collected at the wheat harvest stage 
(mid-June 2020), and 5 soil cores were collected using a soil auger (3 cm 
in diameter) from each plot and mixed to form a comprehensive sample. 
A total of 36 soil samples were collected (9 treatments × 4 replicates), 
immediately placed in an ice box and shipped to the laboratory. Sub-
sequently, visible rocks and plant debris were removed with tweezers. 
Each sample was divided into two aliquots. One aliquot was passed 
through a 2.0 mm sieve, thoroughly mixed and stored at 4 ◦C for the 
analyses of PLFA and soil enzyme activities. The other aliquot was air- 
dried, grounded and all passed through a 0.125 mm sieve to deter-
mine SOC, total nitrogen (TN), amino sugars and lignin phenols. SOC 
was determined by wet oxidation-redox titration and TN was deter-
mined by the semi-micro Kjeldahl method (Cao et al., 2022). The 
calculation of the C:N ratio in the soil was based on the ratio of SOC and 
TN. 

2.5. Lignin phenol analysis 

The content of soil lignin monomers was determined according to the 
method proposed by Otto et al. (2005). Samples were digested with 
alkaline CuO in Teflon vessels under high pressure to break down lignin 
macro-molecules into monomer phenols. Octadecyl solid phase extrac-
tion column (SampliQ C18 columns, Agilent Technologies, Santa Clara, 
CA, USA) was used to collect lignin-derived phenols, which were then 

eluted and derivatized with pyridine and N,O-bis(trimethylsilyl) 
trifluoroacetamide. Phenols derived from lignin were analyzed using a 
DM-1 column (30 m × 0.25 mm × 0.25 μm) on an Agilent 6890A GC 
equipped with an FID. Ethylvanillin was added as an internal standard 
before oxidation and phenylacetic acid was added before derivatization 
to determine the recovery efficiency of the lignin products. 

The lignin phenol included vanillyl (V-type: vanillin, acetovanillone 
and vanillic acid), syringyl (S-type: syringaldehyde, acetosyringone and 
syringic acid), and cinnamyl (C-type: p-coumaric acid and ferulic acid). 
The total content of lignin phenol was calculated as the sum of vanillyl, 
syringyl and cinnamyl monomers. In addition to the lignin monomer 
content, the S-type: V-type ratio and the C-type: V-type ratio were 
calculated to estimate the degree of lignin biotransformation. The 
decreasing trend of these ratios indicated that lignin biotransformation 
was in progress. Acid/aldehyde ratios of vanillyl (Ad/Al)v and syringyl 
(Ad/Al)s were calculated to assess the degree of lignin degradation, with 
higher ratio values indicating greater degradation (Otto and Simpson, 
2006). 

2.6. Analysis of amino sugars 

Amino sugars were analyzed according to the method described by 
Zhang and Amelung (1996). Briefly, soil samples were hydrolyzed with 
6 M HCl (105 ◦C, 8 h), filtered, adjusted to pH 6.6–6.8, and centrifuged 
(1000×g, 10 min). The supernatant was freeze-dried and the amino 
sugars in the residue were redissolved in methanol. The reconstituted 
amino sugars were converted to malononitrile derivatives and deter-
mined on an Agilent 6890A GC equipped with FID using an HP-5 
capillary column (25 m × 0.25 mm × 0.25 μm). Amino sugars were 
quantified using myoinositol added before purification as an internal 
standard. The recovery efficiency of the amino sugars was quantitatively 
monitored using methylglucamine which was added to the sample 
before derivatization as a recovery standard. 

Glucosamine (GlcN) and muramic acid (MurN) were selected from 
the detected amino sugars as representatives to estimate the accumu-
lation of fungal and bacterial necromass (Appuhn and Joergensen, 2006; 
Engelking et al., 2007; Liang et al., 2019). Fungal necromass C was 
determined by subtracting bacterial GlcN from total GlcN, assuming that 
MurN and GlcN occurred in bacterial cells in a 1:2 M ratio. The methods 
of the calculation were as follows:  

Fungal necromass C (mg g− 1 soil) = (GlcN (mmol g− 1soil) − 2 × MurN 
(mmol g− 1 soil)) × 179.2 g mol− 1 × 9                                               (1)  

Bacterial necromass C (mg g− 1 soil) = MurN (mg g− 1 soil) × 45           (2) 

Where 179.2 is the molecular weight of GlcN; 9 is the conversion 
factor of fungal GlcN to fungal necromass C; and 45 is the conversion 
factor of bacterial MurN to bacterial necromass C. Microbial necromass 
C was estimated as the sum of fungal and bacterial necromass C. 
Maximal plant residue C was the difference between SOC and microbial 
necromass C (i.e., SOC − microbial necromass C). It should be noted that 

Table 2 
Total C and N input derived from straw, crop stubble, N fertilizer and atmospheric N deposition during 2002–2019.  

Treatments C input N input 

Straw stubble Total C input N fertilizer N deposition stubble Total N input 

Mg C ha− 1 Mg C ha− 1 Mg C ha− 1 kg N ha− 1 kg N ha− 1 kg N ha− 1 kg N ha− 1 

Str0N0 0 30.9 30.9 0 390 520 910 
Str0N120 0 46 46 2160 390 775 3325 
Str0N240 0 48.1 48.1 4320 390 811 5520 
Str7.5N0 24.6 30.5 55.1 0 390 514 904 
Str7.5N120 24.6 49.3 73.9 2160 390 832 3381 
Str7.5N240 24.6 53.4 78 4320 390 901 5611 
Str15N0 49.2 30.1 79.3 0 390 506 896 
Str15N120 49.2 44.6 93.8 2160 390 753 3303 
Str15N240 49.2 50.1 99.3 4320 390 846 5556  
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there are many assumptions in the determination of microbial necro-
mass, which may over or underestimate maximal plant residue C (Liang 
et al., 2019; Whalen et al., 2022). 

2.7. Soil PLFA analysis 

The composition of the soil microbial community was assessed by 
PLFA biomarker analysis. PLFAs were isolated according to the pro-
cedure described by Frostegård and Bååth (1996). Briefly, soil PLFAs 
were extracted from 8 g freeze-dried soil in a single-phase chlor-
oform-methanol-citrate buffer solution. Phospholipids were separated 
from nonpolar lipids and converted to fatty acid methyl esters (FAMEs) 
before analysis. FAMEs were quantified using a gas chromatograph 
(Agilent 7890, Santa Clara, USA) equipped with a flame ionization de-
tector and HPUltra 2 column (25.0 m × 200 μm × 0.33 μm). FAMEs were 
identified using a MIDI Sherlock Microbial Identification System (MIDI 
Inc.). Quantification of each fatty acid was performed by comparing the 
area of individual peaks with that of the internal standard (methyl 
nonadecanoate; C19:0), and the amount was expressed in nmol g− 1 dry 
soil. 

The PLFAs were assigned to different microbial groups based on 
Joergensen (2022). Soil bacteria consist of Gram-positive and 
Gram-negative bacteria, and the former was formed by Firmicutes and 
Actinobacteria. PLFAs i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0 were 
markers of Firmicutes, and PLFAs 10Me16:0, 10Me17:0, and 10Me18:0 
were used to represent Actinobacteria. PLFAs 16:1ω9c, 16:1ω7c, cy17:0, 
18:1ω7c, and cy19:0 were markers of Gram-negative bacteria. In addi-
tion, PLFA 16:1ω5c was a marker of arbuscular mycorrhizal fungi (AMF) 
and 18:2ω6c was a marker of Ascomycota and Basidiomycota. AMF, 
Ascomycota and Basidiomycota were fungi. 

2.8. Enzyme activities assays 

The activities of five soil hydrolytic enzymes were determined ac-
cording to the method of German et al. (2011). They included three 
enzymes involved in C-acquisition (β-1,4-glucosidase (BG), cellobiohy-
drolase (CBH) and β-xylosidase (XYL)), and two involved in N-acquisi-
tion (β-1,4-N-acetylglucosaminnidase (NAG) and leucine 
aminopeptidase (LAP)). Briefly, 96-well microplates were used for the 
enzyme assays. For each sample, 1 g of fresh soil was suspended in 50 ml 
of 50 mM sodium acetate buffer (pH 8.0). 200 μl of soil suspension and 
50 μl of 200 μM enzyme substrate were added to each microplate well. 
200 μl of soil suspension and 50 μl of sodium acetate were added to the 
control wells. Quench control wells were filled with 50 μl standard 
substrate of 7-amino-4-methylcoumarin or 4-methylumbelliferyl (10 
μM) and 200 μl soil suspension. Then, 50 μl of 200 μM enzyme-specific 
substrate was added to 200 μl sodium acetate buffer in blank substrate 
wells. Eight replicates of each plate were incubated in the dark at 25 ◦C 
for 2.5 h. Fluorescence was measured using a microplate reader 
(M200PRO, TECAN Company, Switzerland) at an excitation wavelength 
of 360 nm and an emission wavelength of 460 nm. The activity of the 
hydrolytic enzymes was expressed in μmol g− 1 dry soil h− 1. 

2.9. Statistical analysis 

All data in figures are presented as mean ± standard errors (SE) of 
the four replicates (n = 4). All statistical analyses were conducted in 
JMP 11 for Windows (SAS Institute Inc., Cary, NC) or R (version 3.6.1). 
The Shapiro-Wilk test was used to test for normality, and the Levene test 
was used to test the homogeneity of variance. Data for SOC, soil C:N 
ratio, fungal necromass C, fungal necromass C in SOC, microbial nec-
romass C in SOC, and total lignin phenols met the requirements of 
normality and homogeneity. The two-way analysis of variance (ANOVA) 
was used to reveal the effects of straw return, N fertilization, and their 
interactions on the above parameters at p < 0.05. The Tukey’s HSD test 
was followed to determine the statistical significance of these 

parameters at p < 0.05. Bacterial necromass C, bacterial necromass C in 
SOC, and total lignin phenols in SOC were found to be out of normality 
or homogeneity. The Scheirer-Ray-Hare test was used to reveal the ef-
fects of straw return, N fertilization, and their interactions on these 
parameters at p < 0.05. Dunn test was employed to determine the sta-
tistical significance of these parameters at p < 0.05. If the effects of both 
straw return and N fertilization were significant, η2 was calculated as a 
parameter to represent the contribution of each factor to the total effect 
size.  

η2 = SSA/SStotal                                                                              (3) 

Where SSA is the variance between treatments due to factor A and SStotal 
is the total sum of squares. 

The relationships among SOC, fungal necromass C, bacterial necro-
mass C, lignin phenols, the degree of lignin degradation, PLFA, and 
enzyme activities were evaluated using Spearman’s correlation. 
Random forest (RF) analysis was applied to identify the main predictors 
(fungal necromass C, bacterial necromass C, and lignin phenols) of SOC 
sequestration. The percentage increases in the mean square error (MSE) 
of variables were calculated to estimate the importance of these pre-
dictors. The higher MSE% values indicate relatively more important 
variables. The significance of each predictor for the response variables 
was assessed with the ‘‘rfPermute” package in R. 

3. Results 

3.1. Soil organic carbon content and C:N ratio 

Compared with Str0N0, straw return and N fertilization increased 
SOC by 4.8%–38.4% (Fig. 1a). The increased effect was more pro-
nounced at high straw return rates than at other rates (Str0 < Str7.5 <
Str15). Similarly, compared to the soil without N fertilization (N0), N 
fertilization (N120 and N240) increased SOC by 8.4% and 11%, 
respectively. The effect size of straw return on SOC content was greater 
than that of N fertilizer. The C:N ratio was higher in soil with straw 
return than in soil without straw return, but N fertilization had no effect 
on the C:N ratio (Fig. 1b). 

3.2. Soil lignin phenols in soil organic carbon 

Compared with the soil without straw return (Str0), straw return 
(Str7.5 and Str15) increased the content of total lignin phenols, V-type, 
and S-type phenols as well as their proportion in SOC (Str0 < Str7.5 <
Str15, Fig. 2a–c, e-g). The C-type phenol content was higher under Str15 
than under Str7.5 and Str0, while the proportion of C-type phenols in 
SOC was lower under Str7.5 and Str15 than under Str0 (Fig. 2d and h). 
Thus, higher straw returns increased the contribution of V-type and S- 
type phenols to SOC but decreased the contribution of C-type phenols. 

Straw return and the interactions between straw return and N 
fertilization affected lignin biotransformation (Fig. 3a). Compared to 
Str0, straw return decreased the C-type: V-type ratio by 24% and 28% 
under Str7.5 and Str15, respectively. The ratio of S-type: V-type was 
higher under Str0N240 than under Str0N120 and Str0N0, while those 
under Str7.5 and Str15 were similar regardless of the N fertilization rate. 
Furthermore, the (Ad/Al)V and (Ad/Al)S ratios decreased with 
increasing straw return (Fig. 3b) and were negatively correlated with the 
content of V-type and S-type phenols (Fig. 3c and d), respectively. The 
(Ad/Al)S ratio under N240 was lower than that under N0. 

3.3. Microbial necromass C in soil organic carbon 

Compared with Str0N0, straw return and N fertilization increased 
fungal and bacterial necromass C by 2.2%–35.9% and 13.8%–68.4%, 
respectively (Fig. 4a and b). Fungal necromass C content was increased 
by both straw return (Str0 < Str7.5 < Str15) and N fertilization (N0 <
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N120 = N240) (Fig. 4a). In contrast, straw return and N fertilization had 
no effects on the proportion of fungal necromass C in SOC (Fig. 4d). N 
fertilization rather than straw return increased bacterial necromass C 
content and its contribution to SOC (Fig. 4b and d). N120 and N240 
substantially increased the proportion of bacterial necromass C in SOC 
compared to N0. N240 reduced the proportion of the maximal plant 
residue C in SOC compared to N0 (Fig. 4c). The random forest model 
indicated that fungal necromass C, bacterial necromass C and lignin 
phenols were the reliable predictors of SOC, and among them, fungal 

necromass C contributed the most to SOC (Fig. 5). 

3.4. Microbial community composition and enzyme activities 

Straw return and N fertilization increased the PLFA contents and 
changed the microbial community composition (Table 3). The PLFAs of 
Ascomycota and Basidiomycota, Actinobacteria and Gram-negative 
bacteria were higher under Str7.5 and Str15 than under Str0. Simi-
larly, they were higher under N120 and N240 than under N0 (Table 3). 

Fig. 1. Effects of long-term straw return and N fertilization on SOC content (a) and soil C:N ratio (b). Error bars represent standard errors of the mean (n = 4). Str0, 
no straw return; Str7.5, low straw return rate; Str15, high straw return rate; N0, no N fertilization; N120, low N fertilization rate; N240, high N fertilization rate. 
Upper case letters indicate significant differences among three straw return rates at p < 0.05. Lower case letters indicate significant differences among all treatments 
at p < 0.05. η2, the contribution of each factor to the total effect size. 

Fig. 2. Effects of long-term straw return and N fertilization on total (a) and individual (b–d) lignin phenol contents in soil, and the proportion of total (e) and 
individual (f–h) lignin phenols in SOC. Str0, no straw return; Str7.5, low straw return rate; Str15, high straw return rate; N0, no N fertilization; N120, low N 
fertilization rate; N240, high N fertilization rate. Error bars represent standard errors of the mean (n = 4). Upper case letters indicate significant differences among 3 
straw return rates at p < 0.05. Lower case letters indicate significant differences among all treatments at p < 0.05. η2, the contribution of each factor to the total 
effect size. 
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The effect size of N fertilization on the ratio of Ascomycota and Basi-
diomycota: AMF was higher than that of straw return. Fungal necromass 
C increased with the PLFAs of Ascomycota and Basidiomycota and AMF 
(Fig. 6a), while bacterial necromass C increased with the biomass of 
Actinobacteria, Gram-negative bacteria, and Firmicutes (Fig. 6b). Soil 
enzyme activities increased with straw return and N fertilization 
(Table 4). Straw return had a greater impact on BG and LAP, while N 
fertilization had a greater impact on XYL, CBH, and NAG. Fungal and 
bacterial necromass C showed positive effects on NAG and LAP (Fig. 6c 
and d). 

4. Discussion 

4.1. Straw return did not change the plant-derived C contribution to soil 
organic carbon 

Straw may be acting as a precursor of SOC since straw return 
increased the content of SOC, as well as plant-derived (represented by 
lignin) and microbial-derived (estimated from amino sugar) C (Figs. 1, 2 
and 4). However, it remains unclear if straw return increased total plant- 
derived C or only some of the lignin. The proportion of total lignin 
phenols to SOC increased with straw inputs (Fig. 2) because straw res-
idues could be protected within aggregates and by minerals (Lehmann 
and Kleber, 2015; Angst et al., 2021; Xiao et al., 2023). Increasing evi-
dence has proven that straw input accelerated the formation and sta-
bilization of aggregates (Huang et al., 2018; Y. Zhao et al., 2018). In this 
process, straw residues acted as the core of aggregates, and thus they 
were disconnected from microorganisms and enzymes. In addition, 
products of lignin oxidation and hydrolysis may be adsorbed by minerals 
(Angst et al., 2021; Xiao et al., 2023). Straw inputs increased the pro-
portion of V-type and S-type phenols in SOC, and simultaneously 

decreased their decomposition rate (Fig. 3b–d). This finding indicated 
the selective preservation of these two monomer types (Angst et al., 
2021). Thus, if lignin phenols were used as plant-derived biomarkers 
(Chen et al., 2021; Yang Yang et al., 2022), then our results indicated 
that more plant-derived C accumulated in soil under straw return 
(Figs. 2 and 3). However, straw return decreased the proportion of 
C-type phenols in SOC (Figs. 2h and 3) because C-type phenols are 
preferentially located in the outermost cell wall layer (Li et al., 2020) 
and are easily accessed by microorganisms. These microorganisms 
mainly included Ascomycota and Basidiomycota, which were stimulated 
by straw return (Table 3). Some of them e.g., white-rot and brown-rot 
fungi, are capable of degrading lignin by the production of lignin 
peroxidase and manganese-dependent peroxidase and laccase (Gran-
ja-Travez et al., 2020; Atiwesh et al., 2022). Moreover, lignin is only a 
small portion of straw (approximately 6–15% of the dry weight of wheat 
straw) and is commonly interconnected with large amounts of cellulose 
and hemicellulose to form a lignin-carbohydrate complex (Tarasov 
et al., 2018). Cellulose and hemicellulose are degraded faster than 
C-type phenols (Mühlbachová et al., 2021) due to their location on the 
outside of the lignin-carbohydrate complex and the increased activities 
of β-1,4-glucosidase, cellobiohydrolase and β-xylosidase (Table 4). 
Together, these results indicated that the contribution of plant-derived C 
to SOC may not increase under straw return. Therefore, we conclude 
that only using lignin as a biomarker of plant residues cannot accurately 
provide an answer to whether straw return affects the contribution of 
plant-derived C to SOC. 

From another perspective, SOC is commonly divided into two parts: 
plant-derived and microbial-derived C (Huang et al., 2022; Whalen 
et al., 2022). Accordingly, the difference between SOC and 
microbial-derived C is considered as the maximum content of 
plant-derived C. Therefore, the unchanged proportion of microbial 

Fig. 3. Effects of long-term straw return and N fertilization on lignin biotransformation and degradation. The degree of lignin biotransformation is represented by the 
S-type: V-type and the cinnamyl: vanillyl ratio (a). Lignin degradation indices were described by acid/aldehyde ratios of vanillyl (Ad/Al)v and syringyl (Ad/Al)s (b). 
Spearman correlations of Ad/Al ratios for vanillyl with vanillyl content (c) and syringyl phenols with syringyl content (d). Str0, no straw return; Str7.5, low straw 
return rate; Str15, high straw return rate; N0, no N fertilization; N120, low N fertilization rate; N240, high N fertilization rate. Upper case letters indicate significant 
differences of the S-type: V-type ratio or (Ad/Al)v among all treatments at p < 0.05. Lower case letters indicate significant differences of the C-type: V-type ratio or 
(Ad/Al)s among all treatments at p < 0.05. 
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necromass C in SOC (Fig. 4d) indicated that straw return did not increase 
the proportion of plant-derived C as expected, inconsistent with Hy-
pothesis 1. Straw return strongly increased SOC accumulation and this 
was mainly related to the conversion of straw into fungal biomass which 
was further subsequently accumulated in the soil as fungal necromass 
(Fan et al., 2020; Yali Yang et al., 2022). This finding was attributed to 
the substantial fungal biomass, especially under the conditions of suf-
ficient C sources (Blagodatskaya and Kuzyakov, 2013; Wang et al., 2021; 
Zhu et al., 2021). In particular, Ascomycota and Basidiomycota 
contributed more than AMF to fungal necromass, because AMF are 
commonly low in bulk soil (outside of the rhizosphere), and the incor-
poration of large amounts of straw and N fertilizer into bulk soil can 
stimulate the growth of saprophytic fungi over that of AMF (Medina 
et al., 2020; Karst et al., 2021). In addition, the fungal necromass can be 
further preserved by physical protection within the aggregates and by 
adsorption on minerals (Angst et al., 2021). The more active growth of 
the fungi in turn can stimulate the formation of soil aggregates (Six et al., 
2006; Witzgall et al., 2021; Agnihotri et al., 2022; Wei et al., 2022). As a 
consequence, the coincident increase in both SOC and microbial nec-
romass under straw return resulted in the unchanged microbial necro-
mass proportion in SOC. In addition, the higher relative importance of 
fungal necromass than lignin phenols to the increase in SOC content 
with straw return (Fig. 5) indirectly proved that using lignin phenols 

Fig. 4. Effects of long-term straw return and N fertilization on the content of fungal (a), bacterial (b) necromass C, and maximal plant residue C (c) contents. 
Contribution of microbial necromass C and maximal plant residue C in SOC sequestration (d). Error bars in a-c represent standard errors of the mean (n = 4). Upper 
case letters indicate significant differences of fungal necromass C among straw return rates (a and c) at p < 0.05. Lower case letters indicate significant differences 
among all treatments at p < 0.05. 

Fig. 5. Relative importance of lignin phenols and microbial necromass C by the 
percentage increase of the mean squared error (MSE%) using random forests 
models. **and * in (d) indicates p < 0.01 and p < 0.05, respectively (n = 36). 
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Table 3 
Effect of long-term straw return and N fertilization on PLFA concentrations (nmol g− 1) and microbial community composition.   

Firmicutes Gram-negative 
bacteria 

Actinobacteria Ascomycota and 
Basidiomycota 

AMF Firmicutes: Gram- 
negative bacteria 

Ascomycota and 
Basidiomycota: AMF 

Fungi: 
bacteria 

Str0N0 3.15 ± 0.67 
b 

2.69 ± 0.31 c 2.26 ± 0.34 bc 0.89 ± 0.12 c 0.61 ±
0.03 b 

1.17 ± 0.17 ab 1.46 ± 0.15 e 0.19 ±
0.013 a 

Str0N120 3.06 ± 0.64 
b 

2.62 ± 0.76 c 2.16 ± 0.54 c 0.95 ± 0.21 bc 0.48 ±
0.10 b 

1.19 ± 0.15 ab 2.00 ± 0.04 c 0.18 ±
0.011 ab 

Str0N240 3.82 ± 0.83 
b 

3.58 ± 0.66 abc 2.82 ± 0.34 
abc 

1.41 ± 0.26 abc 0.61 ±
0.08 b 

1.06 ± 0.06 b 2.29 ± 0.14 ab 0.20 ±
0.005 a 

Str7.5N0 3.87 ± 0.84 
ab 

2.72 ± 0.66 c 2.50 ± 0.44 bc 0.92 ± 0.18 c 0.57 ±
0.11 b 

1.44 ± 0.18 a 1.63 ± 0.04 de 0.16 ±
0.004 b 

Str7.5N120 6.10 ± 0.78 
a 

4.89 ± 0.38 a 3.79 ± 0.32 a 1.83 ± 0.19 a 0.98 ±
0.09 a 

1.24 ± 0.12 ab 1.87 ± 0.05 cd 0.19 ±
0.004 a 

Str7.5N240 3.79 ± 0.91 
b 

3.31 ± 0.52 bc 2.73 ± 0.46 bc 1.30 ± 0.25 abc 0.57 ±
0.13 b 

1.14 ± 0.11 b 2.31 ± 0.08 ab 0.19 ±
0.004 a 

Str15N0 4.11 ± 1.22 
ab 

3.52 ± 0.74 abc 2.74 ± 0.43 
abc 

1.15 ± 0.21 bc 0.75 ±
0.13 ab 

1.16 ± 0.11 ab 1.53 ± 0.06 e 0.18 ±
0.009 ab 

Str15N120 4.48 ± 1.03 
ab 

4.04 ± 0.79 abc 2.97 ± 0.41 
abc 

1.47 ± 0.26 ab 0.73 ±
0.15 ab 

1.11 ± 0.08 b 2.03 ± 0.10 bc 0.19 ±
0.009 a 

Str15N240 4.73 ± 1.28 
ab 

4.53 ± 0.83 ab 3.31 ± 0.62 ab 1.78 ± 0.31 a 0.72 ±
0.20 ab 

1.03 ± 0.11 b 2.52 ± 0.26 a 0.20 ±
0.010 a 

Source of variance and multiple comparisons 
Straw return 
p 0.01 0.01 0.01 0.01 0.049 0.02 0.07 0.01 
η2 0.22 0.21 0.21 0.15 0.17 0.21 0.02 0.13 
Str15 A A A A A B  A 
Str7.5 A A A A A A  B 
Str0 B B B B B B  AB 
N fertilization 
p 0.11 0.01 0.02 0.01 0.58 0.02 0.01 0.01 
η2 0.08 0.18 0.13 0.38 0.03 0.2 0.87 0.37 
N240  A A A  A A A 
N120  A A A  AB B A 
N0  B B B  B C B 
Str*N         
p 0.02 0.01 0.01 0.13 0.01 0.85 0.05 0.04 
η2 0.23 0.26 0.28 0.2 0.37 0.04 0.03 0.15 

Note: AMF, arbuscular mycorrhizal fungi. Data are means of 4 replicates ± standard deviation (n = 4). The differences of these microbial parameters were analyzed by 
two-way ANOVA and Tukey’s HSD test. Lower case letters indicate significant differences between various treatments at p < 0.05. Upper case letters indicate sig-
nificant differences between 3 straw return rates or 3 N application rate at p < 0.05. 

Fig. 6. Spearman correlations of microbial necromass C with PLFA (a, b) or with N-acquiring enzyme activities (c, d). Gram-negative bacteria, gram negative 
bacteria; AMF, arbuscular mycorrhizal fungi; NAG, β-1,4-N-acetylglucosaminnidase; LAP, leucine aminopeptidase. 
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alone as a biomarker is not suitable for predicting the proportion of 
plant-derived C in SOC. Therefore, we suggest considering differences 
between necromass and SOC for quantifying the proportion of plant 
residues, and phenol monomers for characterizing the composition of 
the plant residues. 

4.2. N fertilization accelerated microbial utilization of plant residues and 
necromass formation 

N fertilization under straw return increased the ratio of fungi to 
bacteria, Ascomycota and Basidiomycota content (Table 3). In addition, 
the interaction of straw return and N fertilization increased Actino-
bacteria and Gram-negative bacteria content (Table 3). The enrichment 
of Actinobacteria, Ascomycota and Basidiomycota under straw return 
helped to increase the utilization efficiency of straw because it is 
generally believed that fungi (especially Ascomycota and Basidiomycota 
rather than AMF) and Actinobacteria are the main participants in straw 
decomposition (Six et al., 2006; Zhao et al., 2016). In addition, the 
greater amount of Actinobacteria, Gram-negative bacteria, Ascomycota 
and Basidiomycota were associated with higher enzyme activities (e.g., 
β-1,4-glucosidase, cellobiohydrolase and β-xylosidase) to acquire nu-
trients, which may in turn promote their growth. Thus, N fertilization 
accelerated the conversion of straw into microbial biomass. 

N fertilization increased the proportion of bacterial necromass C in 
SOC (Fig. 4d). In addition to the reasons mentioned above, the low 
background value of the contribution of bacterial necromass C to SOC 
(2.4% in Str0N0) made the increase more pronounced compared with 
that of fungal necromass (38%) (Fig. 4). Surprisingly, the proportion of 
bacterial necromass C in SOC was much lower than that in other studies 
(15% on average) (Liang et al., 2019; Xu et al., 2022). This finding may 
be due to the local soil properties and climatic conditions of the study 
area (Buckeridge et al., 2020). The high soil pH (8.2), low nutrient 
content and low soil moisture did not favor bacterial growth (Patoine 
et al., 2022), while high temperature stimulated the decomposition of 
necromass (Donhauser et al., 2021; Li et al., 2021). This was further 
illustrated by the lower bacterial biomass in this study (10.5 nmol g− 1, 
Table 3) than that in other studies (Li et al., 2020; Xu et al., 2022). 

Higher N-acquiring enzyme activities were also associated with an 
increase in microbial necromass C (Fig. 6c–d). This indicated that the 
consumption of microbial necromass C could be accelerated with its 
content and percentage increase. Specially, bacteria have a lower C:N 
ratio and are more dispersed in soil. Thus, their necromass is more 
accessible to living microorganisms and enzymes and may have been 
degraded more quickly (Wang et al., 2021; Hartmann and Six, 2022). 
This was supported by the higher correlation of bacterial necromass 
with β-1,4-N-acetylglucosaminnidase activity than that of fungal nec-
romass (Fig. 6). Consequently, the increased amount of bacterial nec-
romass and its rapid decomposition suggested that bacteria play an 
important role in both N sequestration and mineralization (Mason-Jones 
et al., 2021; Ni et al., 2021; Ma et al., 2022). 

5. Conclusions 

This study demonstrated the role of plant- and microbial-derived C in 
SOC sequestration under straw return and N fertilization based on an 18- 
year field experiment (Fig. 7). Although straw return strongly contrib-
uted to SOC sequestration, it did not change the contribution of plant 
residues or microbial necromass C to SOC. Comparatively, N fertilization 
accelerated the conversion of plant residues into microbial necromass by 
boosting the growth of Actinobacteria, Gram-negative bacteria, Asco-
mycota and Basidiomycota and increasing enzyme activities. As a result, 
N fertilization built SOC mainly through the accelerated accumulation of 
microbial necromass. The greater accumulation of microbial necromass 
increased N-acquiring enzyme activities and thus in turn contributed to 
the decomposition of necromass. Overall, a comprehensive analysis of 
the biomarkers of living microbial biomass (PLFA), microbial necromass 
(amino sugars), and plant residue biomass (lignin phenols) enabled us to 
trace plant residue conversion to microbial biomass and necromass 
formation and to demonstrate the importance of microorganisms for 
SOC sequestration. 
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Effect of long-term straw return and N fertilization on enzyme activities (nmol g− 1 dry soil h− 1).   

β-1,4-glucosidase β-xylosidase Cellobiohydrolase β-1,4-N-acetylglucosaminnidase Leucine aminopeptidase 

Str0N0 74.1 ± 4.5 e 14.4 ± 2.8 d 20.9 ± 5.2 cd 51.4 ± 6.1 d 24.3 ± 2.8 c 
Str0N120 82 ± 5.2 de 27.1 ± 6.2 b 23.9 ± 5.3 bcd 62.6 ± 2.5 cd 29 ± 3.9 bc 
Str0N240 91.8 ± 10.8 cde 32.2 ± 1.3 ab 32.2 ± 2.4 ab 76.3 ± 6 c 35.6 ± 2.7 ab 
Str7.5N0 97.8 ± 7.2 bcd 17.3 ± 1.7 cd 20.8 ± 2.5 d 72.2 ± 13.9 cd 29.6 ± 2 bc 
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Straw return 
p 0.01 0.01 0.02 0.01 0.01 
η2 0.69 0.38 0.23 0.36 0.31 
Str15 A A A A A 
Str7.5 A B B A A 
Str0 B B B B B 
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p 0.01 0.01 0.01 0.01 0.04 
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Note: Data are means of 4 replicates ± standard deviation (n = 4). The differences of these enzyme parameters were analyzed by two-way ANOVA and Tukey’s HSD 
test. Lower case letters indicate significant differences between various treatments at p < 0.05. Upper case letters indicate significant differences between 3 straw 
return rates or 3 N application rate at p < 0.05. 
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